
The Project Management

Blueprint Part 1: A

Comprehensive

Comparison of Agile,

Scrum, Kanban, and Lean

DARREN HAGMAN

Darren is a veteran Scrum master with experience in Waterfall and Agile across a number of

industries.
20SHARES

Overview

Many methodologies are used in software development today. You may have heard

buzzwords such as Waterfall, Agile, Scrum, Kanban, Lean, Extreme Programming, etc.

In this article, I will define these terms, discuss how they are related to each other and

how they differ from each other. Many of the aforementioned buzzwords are based on

concepts from Lean Manufacturing which was originally based on the Toyota

Manufacturing System (TPS) so we will talk about this first.

Lean Methodology

https://www.toptal.com/project-managers/resume/darren-hagman
https://en.wikipedia.org/wiki/Lean_manufacturing
https://www.toyota-global.com/company/vision_philosophy/toyota_production_system/
https://www.toyota-global.com/company/vision_philosophy/toyota_production_system/
https://www.toptal.com/project-managers/resume/darren-hagman

Origins of Lean and Lean Manufacturing

The term “Lean” has its origins in manufacturing where it was coined to describe a

manufacturing model based on the Toyota Production System (TPS) originally

developed by Sakichi Toyoda, Kiichiro Toyoda, and Taiichi Ohno who were originally

inspired by Henry Ford. TPS was focused on the philosophy of “the complete

elimination of all waste” and revolutionized manufacturing in the 1950s thru 1970s. TPS

become known as “Lean Manufacturing” in 1990 when “The Machine That Changed the

World” was published.

TPS identified three broad types of waste at Toyota:

• Muda: translated as “waste.” There were seven types of muda identified at

Toyota and an eighth was later added. These are:

• Defects: effort involved in finding and fixing defects

• Overproduction: production ahead of demand

• Waiting: waiting for the next production step, interruptions, etc.

• Non-used Talent: underutilizing capabilities, inadequate training, etc

• Transport: moving parts or products that aren’t required for processing

• Inventories: finished inventory and work in progress

• Motion: moving or walking more than what is needed for processing

• Excess Processing: from poor tooling or product design

https://en.wikipedia.org/wiki/The_Machine_That_Changed_the_World_(book)
https://en.wikipedia.org/wiki/The_Machine_That_Changed_the_World_(book)

• Muri: translated as “overburden.” Muri usually results from mura but can result

from muda. Muri manifests itself in break-downs, absenteeism, safety issues, etc.

• Mura: translated as “unevenness.” Mura can be found in fluctuation in customer

demand, process times per product or variation of cycle times for different

operators. When mura is not reduced, one increases the possibility for muri and,

therefore, muda. Mura can be reduced by creating openness in the supply chain,

changing product design, and creating standard work for all operators.

TPS worked to eliminate waste by applying these two core concepts:

• Jidoka: loosely translated as “automation with a human touch” stipulates that

“Quality must be built in during the manufacturing process!” which means that

when a problem occurs, the equipment stops immediately, preventing defective

products from being produced.

• Just-in-Time: Making only “what is needed, when it is needed, and in the

amount needed.”

As TPS evolved, these core pillars and values built upon the concepts

of Jidoka and JIT and became entrenched:

• Continuous Improvement:

• Challenge: forming a long-term vision and meeting challenges with

courage and creativity to realize dreams

https://www.toyota-global.com/company/vision_philosophy/toyota_production_system/jidoka.html
https://www.ifm.eng.cam.ac.uk/research/dstools/jit-just-in-time-manufacturing/

• Kaizen: improving business operations continuously, always driving for

innovation and evolution, eliminating one muda at a time

• Genchi Genbutsu: practicing genchi genbutsu, going to the source to

find the facts to make correct decisions, build consensus, and achieve

goals at our best speed

• Respect for People:

• Respect: respecting others and making every effort to understand each

other, taking responsibility and doing our best to build mutual trust

• Teamwork: stimulating personal and professional growth, sharing

opportunities for development, and maximizing individual and team

performance

• Andon: a visual indicator of status or trouble

• Heijunka: means leveling or production leveling

• Hansei: means self-reflection. To improve efficiency, workers should challenge

assumptions behind current processes to find better ones.

• Kanban: a signboard used as a visual tool to control production

• Poka-yoke: Also referred to as mistake proofing or error proofing

• Pull System: Material is pulled into a workstation just as it is needed

• Seiri: is the principle that mirrors waste. Seiri dictates that what is unnecessary

should be removed. This encompasses all of the original seven wastes of TPS

• Standardization: organizes all jobs around human motion and creates an

efficient production sequence without muda. This helps lead to quality, a

constant pace, and allows for continuous improvement.

The diagram below shows how the core concepts and core values relate to each other.

Lean Management

The Toyota Product System and Lean Manufacturing evolved over time and were

applied in a number of areas including management.

Lean Management applied the core values of continuous improvement and respect for

people and distilled it into a set of five prescriptive Lean principles which would be

repeated a number of times to continuously improve and eliminate waste:

https://www.kanbanchi.com/lean-management

1. Identify Value: Specify a value from the standpoint of the end customer by

product family.

2. Map Value Stream: Identify all the steps in the value stream for each product

family, eliminating whenever possible those steps that do not create value.

3. Create Flow: Make the value-creating steps occur in tight sequence so the

product will flow smoothly toward the customer.

4. Establish Pull: As flow is introduced, let customers pull value from the next

upstream activity.

5. Seek Perfection: As value is specified, value streams are identified, wasted

steps are removed, and flow and pull are introduced, begin the process again and

continue it until a state of perfection is reached in which perfect value is created

with no waste.

These principles and other aspects of Lean management were formalized when Womack

& Jones published “Lean Thinking” in 1996.

Lean Software Development

Lean has since been applied to management, software development, and other fields.

In the 1980s and 1990s, the software development industry was approaching a crisis as

projects executed using traditional waterfall methodologies were taking longer and

longer. This often resulted in a huge lag between a business need being identified and a

software solution being delivered. Sometimes this lag was measured in multiple years,

or even in decades in certain industries with specific requirements, such as the

aerospace industry.

During these multiyear timeframes, requirements, systems, or even entire businesses

changed. Often, projects would be canceled part way through or they would complete

their scope, only to find out that what they delivered no longer meets the business needs

as identified at the beginning of the project.

The Waterfall methodology rewarded stakeholders for thinking of everything as they

were forced into writing a contract even though they probably weren’t sure of what they

needed. The Waterfall methodology forced decisions to be made during the

requirements or design phase, and these decisions were very hard to change without

changing the contract and adding costs to the project. A high percentage of software

projects failed completely, or delivered late and over budget, or failed to deliver what

was needed.

This general frustration led to various thought leaders trying to improve on Waterfall.

Early examples include Rapid Application Development (RAD) which focused on

reducing waste by shortcutting the requirements and design phases via rapidly

developing a prototype and collaborating with business to further develop the

requirement. There was also a move toward iterative development where a small project

was completed and features were added in continual iterations. While these

methodologies helped, they did not solve the core problems associated with Waterfall.

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://en.wikipedia.org/wiki/Rapid_application_development
https://www.toptal.com/project-managers/agile/project-management-blueprint-part-1-agile-scrum-kanban-lean#heading=h.hcpyb4cmdb2n

In the 1990s and early 2000s, several authors published books on applying Lean

principles to software development. Dr. Robert Charette published “Lean Software

Development” in 1993 and “12 Principles of Lean Software Development” in 2003.

Tom and Mary Poppendieck published “Lean Software Development: An Agile

Toolkit” in 2003. This book detailed seven principles of Lean Development, which

correlates directly to the seven forms of waste in Lean Manufacturing. The similarities

and differences between the two different Lean publications and Agile (discussed in the

next section) are laid out in the diagram below.

DIFFERENCES BETWEEN LEAN AND AGILE

According to Dr. Charette, one of the primary differences between Lean and Agile is that

Agile is bottom up, while Lean is top down.

Goals

Charette's Lean Software
Development The Agile Manifesto

Poppendieck's
Lean

1. 1/3 Human effort

2. 1/3 Development

hours

3. 1/3 Time

4. 1/3 Investment

5. 1/3 Effort to adapt

1. Individuals and

interactions

2. Working software

3. Customer

collaboration

4. Responding to change

Principles

https://www.oreilly.com/library/view/agile-software-development/0201760436/ch16.html
https://www.oreilly.com/library/view/agile-software-development/0201760436/ch16.html
https://www.oreilly.com/library/view/lean-software-development/0321150783/
https://www.oreilly.com/library/view/lean-software-development/0321150783/

Charette's Lean Software
Development The Agile Manifesto Poppendieck's Lean

1. Customer

satisfaction

2. Value for money

3. Customer

participation

4. Team effort

5. Everything is

changeable

6. Domain, not point

solutions

7. Complete, don't

construct

8. 80% Solution

today

9. Minimalism is

essential

10. Needs determine

tech

1. Customer satisfaction

2. Welcome changing

requirements

3. Frequent cycles of

delivery

4. Stakeholder

collaboration

5. Culture of trust,

support, and

motivation

6. Face-to-face

communication

7. Working software is

the metric

8. Sustainable

development

9. Technical excellence

10. Simplicity

1. Eliminate

waste

2. Amplify

learning

3. Deliver as fast

as possible

4. Decide as late

as possible

5. Empower the

team

6. Build integrity

in the product

7. See the whole

process

Charette's Lean Software
Development The Agile Manifesto Poppendieck's Lean

11. Product growth is

feature growth

12. Mind the limits

11. Self-organizing

teams

12. Team reflection

Agile Framework

Origins of Agile and The Agile Manifesto

Around the same time that Charette and the Poppendiecks published their books, the

Agile Framework was created to help solve the same problems. In February 2001, a

group of Agile pioneers met at the infamous Snowbird meeting in Snowbird, Utah to try

and come up with a solution.

The result was the Agile Manifesto which laid out a set of values and principles for a

methodology that attempts to adapt to changing requirements and customer needs, cut

waste, and deliver benefits faster using an incremental, iterative approach.

The Agile Manifesto reads as follows:

“We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

http://agilemanifesto.org/

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more.”

Aligned with the values in the manifesto are the 12 principles behind the Agile

Manifesto:

“We follow these principles:

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress. Agile processes promote

sustainable development.

8. The sponsors, developers, and users should be able to maintain a constant pace

indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.”

The above values and principles are applications of Lean principles such as Jidoka, JIT,

Genchi Genbutsu, Kaizen, Hansei, Heijunka, and reducing waste.

Agile Principles Applied to Software Development

Agile is an umbrella framework that applies to any process that applies the Agile set of

values and principles.

Some examples are:

• Extreme Programming

• Scrum

• Kanban

Scrum

Brief History of Scum

https://www.toptal.com/project-managers/digital/a-design-thinking-case-study

Scrum is a framework that applies Agile principles that was invented separately by

multiple people, several of whom signed the Agile Manifesto:

• Hirotaka Takeuchi and Ikujiro Nonaka initially introduced the term “scrum” in a

manufacturing context in their white paper “The New Product Development

Game.” published in 1986 in the Harvard Business Review.

• Jeff Sutherland, John Scumniotales and Jeff McKenna implemented Scrum at the

Easel Corporation in 1993.

• Ken Schwaber used what would become Scrum at his company, Advanced

Development Methods in the 1990s .

Schwaber and Sutherland collaborated throughout the 1990s to develop and refine the

framework in a software development context, speaking at various conferences.

Schwaber worked with Mike Beedle to describe the method in the book, “Agile Software

Development with Scrum” in 2001.

Schwaber went on to create both of the main Scrum certification authorities:

• Scrum Alliance: created in 2001. Set up the Certified Scrum accreditation

series.

• Scrum.org: created in 2009 after Schwaber left the Scrum Alliance. Set up the

parallel Professional Scrum accreditation series.

Over time, several frameworks/certification bodies were created to address scaling of

the Scrum framework to larger teams and projects as Scrum was originally designed for

small teams (7 plus or minus 2 members):

• SAFe: Scaled Agile Framework

https://www.scrumalliance.org/
https://www.scrum.org/
https://www.scaledagileframework.com/

• LeSS: Large Scale Scrum

• Scrum@scale: Scrum at Scale created by Jeff Sutherland

Scrum Values

According to the Scrum Alliance:

Scrum is a simple yet incredibly powerful set

of principles and practices that help teams

deliver products in short cycles, enabling fast

feedback, continual improvement, and rapid

adaptation to change.

Scrum is a prescriptive, incremental and iterative framework for developing software

that applies Agile principles. The Scrum values and principles are outlined in the charts

below and have significant alignment with Lean and Agile values and principles.

https://less.works/
https://www.scrumatscale.com/

Scrum Overview

Work is divided up into short time-boxed iterations called sprints which are usually 1-3

weeks. This is in stark contrast to the in-depth planning of Waterfall. The work planned

for the current sprint is chosen from the top of a prioritized backlog of work items called

a Product Backlog (Pull System, Heijunka), and it is fixed once the sprint starts. The

goal is to have working software at the end of each sprint, enabling fast feedback.

At the end of the sprint, the team meets to review the completed work done, how the

sprint went, and to plan the next sprint. The sprint length, as well as the sprint rituals

and cadence, are fixed for each sprint.

Sprints are executed by cross-functional teams containing all the skills needed to

complete the work in the sprint. Daily planning and tracking of progress is done using

visual artifacts like the scrum board and sprint burndown charts.

The work in a sprint is pulled from a prioritized backlog. Following these methods allow

for changing requirements over time and encourages constant feedback from the end

users.

The mind map diagram below outlines some of the main concepts of Scum which will be

discussed in the upcoming sections.

Scrum Roles

Scrum has three roles:

• Scrum Master: the Scrum Master is is a servant leader of the Scrum team. They

are the coach of the team who helps facilitate collaboration, removes

impediments, enforces and safeguards the Scrum process, and protects the team.

This typically means that they organize and facilitate the sprint rituals, ensure

that the product owner has a properly prioritized and groomed backlog, ensures

that the team isn’t pressured to over-commit to a sprint, ensures that scope isn’t

added to a sprint, ensures that the Definition of Done is adhered to. They do not

assign tasks to team members (Genchi Genbutsu) and they are not responsible

for the delivery of a project

• Product Owner: the product owner is ‘the single wringable neck’ responsible

for delivery of the product. The product owner defines the vision of what they

https://www.toptal.com/project-managers/scrum-master
https://www.toptal.com/project-managers/kanban
https://www.toptal.com/project-managers/kanban

want to build and conveys that vision to the team and the organization. The

product owner owns the business and market requirements and prioritizes all the

work that needs to be done thru creating and managing the product backlog.

They decide which features to ship when. They work with the team and other

stakeholders to make sure everyone understands the items in the product

backlog. They accept or reject work completed in a sprint at the sprint demo.

• Team Member: The Scrum team is a self-organizing, cross-functional team

typically comprised of five to seven members. Everyone on the project works

together and helps each other and not necessarily bound to distinct roles like

architect, programmer, designer, or tester. Everyone completes the set of work

together. The Scrum team plans how much work they can complete each sprint

and owns the plan (Genchi Genbutsu).

Scrum Flow, Activities, and Ceremonies

As discussed above, Scrum has a defined flow and a set of rituals and activities. The flow

of a sprint is as follows.

https://www.toptal.com/project-managers/agile
https://www.toptal.com/project-managers/agile

SPRINT PLANNING:

Before a sprint starts, the Scrum Master facilitates a meeting with the scrum team and

the product owner, called the sprint planning meeting, where the product owner

identifies the objectives of the upcoming sprint, and the team then plans their work

according to the objectives.

This is usually done with the following activities:

• Sprint Capacity: the team determines the capacity for the sprint, taking into

account the number of days, number of team members, holidays, etc.

• Sprint Objectives: the product owner identifies what the objectives are for the

sprint. It is critical that the product backlog is prioritized according to the

objectives (i.e., the relevant stories are at the top) and groomed.

• Work Selection: stories or tasks are pulled from the top of the backlog into the

sprint until the estimated capacity is reached. As stories are pulled in, the

product owner will explain the story and answer questions from the team,

updating the story as needed, until the product owner and the Scrum team have a

good, common understanding of the story. Once this activity is completed, the

team has a proposed initial sprint scope.

• Task Breakdown: the Scrum team discusses each story in detail with emphasis

on planning out how they will complete the story and address all the acceptance

criteria and the DoD. They will produce a list of subtasks needed to complete the

story. Once the list of subtasks is complete, the estimate of the story is reviewed

and updated if necessary.

• Sprint Commitment: once all the stories are broken down and estimates are

updated, the proposed initial sprint scope is reviewed. Stories may be removed

from the sprint and put back on the backlog and/or additional stories may be

added. Once this is done, ONLY the Scrum team (and not the Scrum Master or

product owner) commits to completing the work in the sprint, and the sprint is

started.

The total amount of work or scope committed to for the sprint is measured in story

points.

SPRINT EXECUTION

During the sprint, team members pull work items (user stories, tasks, etc.) from the top

of the sprint To Do list to work on. Various team members will work on the various work

items or their subtasks. They will update the status of an item when appropriate by

moving it from one column to the next (typically To Do > In Progress > Testing >

Done or some variation thereof) on the Scrum Board until it is done.

Progress is tracked using a burndown chart which shows the amount of work completed

and remaining measured in story points. Remaining story points are shown on the Y

axis and the remaining time is shown on the X axis. The burndown chart is updated

when stories are done.

On a daily basis, the Scrum Master focuses on:

• Facilitates the daily standup meeting to plan the day and review progress (see

below)

• Ensures that the team has a plan for the day

• Removes roadblocks

• Protects the sprint scope and the team from distractions

• Helps the team maintain their burndown chart and other Scrum statistics

Daily Standup

At the beginning of each day in the sprint, the Scrum Master facilitates a brief, 15-

minute meeting with the scrum team and product owner to plan out the day and review

sprint progress. This is a short meeting where everyone is standing in front of the Scrum

Board and each person in the meeting answers the following questions in 2 minutes or

less, referring to specific items on the sprint board:

• What did you do yesterday?

• What are you planning to do today?

• Are there any impediments preventing you from completing your work?

This allows everyone to see what everyone is working on, see what progress is being

made or not made, and identify impediments and/or help needed.

SPRINT COMPLETION

The Scrum Master facilitates two ceremonies to close out of the sprint before planning

the next sprint.

Sprint Demo

At the end of the sprint, the Scrum Master facilitates a sprint demo meeting where each

completed story is demonstrated on the working software to the product owner and the

rest of the team. The product owner will either accept the story if all the acceptance

criteria are met, or they will reject the story. If a story is rejected, the shortfalls are

identified and the story is put back onto the product backlog in its priority order to be

completed at a later time or not at all. Often, the parts of a story that the product owner

doesn’t accept are broken off into a separate story(s) and the original story is closed.

The total number of completed story points per sprint (Velocity) is calculated and the

sprint is closed. The velocity is used to track the team’s output level and is used to

estimate when features or releases will be complete.

Sprint Retrospective

After the sprint demo but before the next sprint planning meeting, the Scrum Master

facilitates a sprint retrospective where the team reflects on the sprint that just

completed and discusses what went well and what didn’t go well so that they can

continuously and incrementally improve process and quality over time (Kaizen, Hansei).

There are a plethora of retrospective formats or exercises that can be used to help the

team generate discussion.

A list of improvement action items is produced and sometimes they result in items being

added to the product backlog, changes to the DoD or team charter, etc.

PRODUCT BACKLOG MANAGEMENT

Product Backlog Creation

Before a sprint can be planned or executed, the product owner needs to create a product

backlog of work. The backlog usually starts with feature development items called

stories written by the product owner and over time also becomes populated with

development or QA tasks, spikes, and defects, etc. potentially created by any member of

the team. All the items in the backlog are arranged in priority order.

Backlog Grooming

Once the initial product backlog is created and prioritized, the ongoing backlog groom

process takes over. The goal is to always have, at a minimum, enough of the top items in

the backlog groomed and estimated so that they are ready to be pulled into a sprint

during a sprint planning meeting. This is typically done by having regular ongoing

backlog grooming meetings with the product manager and the team facilitated by the

Scrum Master.

Prior to the meeting, a list of stories is sent to the team so they can review and prepare

for the grooming meeting. At the grooming meeting, each item is discussed in terms of

the acceptance criteria, complexity, risk, size, implementation strategy, etc. The

acceptance criteria and other details of the story are reviewed and revised until the

team, product owner, and Scrum Master have a common understanding of the story. At

that point, the story is estimated in story points using a technique called planning poker.

Story Point Estimating

Story points are a unit of effort that uses relative sizing where stories are compared

against previous, known, well-understood pieces of work. You are always asking the

question “is this story bigger, smaller, or approximately the same size” as some other

piece of work.

The Fibonacci scale (1, 2, 3, 5, 8, 13, 21…) is the most commonly used scale where each

increment is approximately twice as big as the previous (i.e., a five-point story is more or

less twice as big as a three-point story). Sometimes other scales like T-shirt sizes (XS, S,

https://www.toptal.com/product-managers

M, L, XL) or even fish (minnow, goldfish, trout, tuna, whale, etc.) are used. Any scale

that allows you to compare the size of something relative to another will work.

Story points represent the team’s entire effort to implement a story, including

development, testing, design, and other miscellaneous tasks needed to the Definition of

Done. The estimate takes into account the amount of work, complexity, and risk. Once

the relative size of the story is determined, a size on the scale is assigned as the estimate.

Teams prepare for story point estimating process by first establishing a baseline for

estimation by picking a “most medium” sized story that the whole team understands as

a reference story. Some additional reference stories that are bigger and smaller are also

chosen.

Story point estimating is done during grooming meetings and sometimes during the

sprint planning using Planning Poker:

1. Each team member/estimator has a set of cards.

2. Backlog items are discussed one at a time as described above.

3. Once the item has been fully discussed, each estimator privately chooses a card to

represent their estimate.

4. When all estimators have made their estimates, they reveal their cards at the

same time.

• If all estimates match, estimators select another backlog item and repeat

the same process.

• When estimates differ, the estimators discuss the issue to come to a

consensus.

The advantages of story point estimating are:

• Quick: estimates are relative to already completed product backlog items.

• Accurate Enough: accurate enough to give an overview of the scope, plan

future work, prioritize, and manage expectations.

• Embraces Uncertainty: Story points specify an unknown time range.

Selecting from a specific Fibonacci-like sequence of story points allows capturing

uncertainty.

• Team Sport: Involves everyone (developers, designers, QA, product managers).

Uses multiple perspectives to determine the size of work but only team members

doing the work can estimate

• Measures Team Velocity: measures how much work a team does in a sprint

versus the amount of time spent doing the work. As the team improves, they will

complete stories of the same size quicker, resulting in a higher story point

velocity over time.

Release Estimating and Tracking

Story point estimating is also used in a release planning context using the following

technique:

1. List all the stories to be sized

2. Put them in order from smallest to largest

• Take the first and second user story.

• Decide which is bigger and put the bigger one below

• Then take the next one and decide where it fits relatively to the other two

• Repeat the process until all the stories are now in the list (in a sequence

from smallest to largest)

3. Size the stories

The story estimates for all the stories in a release combined with the team’s velocity will

allow you to estimate when a release will be complete and track its progress. This is

often shown in a release burn-up chart.

The Scrum Artifacts and Terms

• Product Backlog: A backlog list of all work items for a given product which can

include features (stories), technical tasks, spikes, and defects

• Release Burn-up: A graphical chart used to show progress at a release level

and to predict when a release will be finished using Sprint Velocity. Completed

story points are shown on the Y axis and sprints are shown on the X axis.

• Sprint Backlog: A backlog list of all work items to be completed in a given

sprint. The contents of the sprint backlog are agreed on during the sprint

planning meeting.

• Scrum Board: A table style board that tracks the progress of the work

committed for the sprint. Statuses are shown on the top in vertical columns and

work items are moved across each status until they are done. The scrum board is

populated during the sprint planning meeting and is reset at the end of a sprint.

• Sprint Burndown: A graphical chart which shows the amount of work

completed and remaining measured in story points over the length of the sprint.

Remaining story points are shown on the Y axis and the remaining time is shown

on the X axis.

• Sprint Velocity: The number of story points that a Scrum team completes in a

sprint.

• Impediments Backlog: A list of impediments that need to be addressed by the

Scrum Master so that the team can continue to work. When a team member is

blocked, they will add an item to the impediments backlog to provide visibility to

the team and Scrum Master.

• Epic: An epic is a large body of work consisting of multiple related user stories.

• User Story: A user story is a description of a software feature from an end-user

perspective. The user story describes the type of user, what they want and why. A

user story helps to create a simplified description of a requirement and includes

acceptance criteria. User stories are created and maintained by the product

owner.

• Task: A task is a piece of work that is entered by the Scrum Master or team

member that may be directly or indirectly related to user stories. They are usually

technical in nature and will include acceptance criteria.

• Spike: A spike is a special type of task that is used when you need to research,

prototype, and/or architect sometime before you can decide on how to

implement or estimate a user story.

• Subtask: A subtask is a task that is entered as an implementation step towards

completing a user story or task. They are usually entered by the team during a

sprint planning meeting.

• Story Point Estimates: A relative sizing estimation scale that is based on the

Fibonacci scale (1, 2, 3, 5, 8, 13, 21…)

• Acceptance Criteria: The list of story specific, testable items included in every

story that must be completed before a product owner will accept a story as being

completed.

• Definition of Done (DoD): A list of common steps or criteria that must be

completed before any story can be considered done. The team agrees on this and

documents it so that it doesn’t have to be listed in every story.

Advantages and Disadvantages of Scrum

The primary advantage of Scrum is the application of Agile values and principles as well

as Lean concepts such as Seiri, Jidoka, Just-in-Time, Kaizen, Genchi Genbutsu,

Heijunka, Pull System, and Iterations. Applying these principles allow project teams to

receive continuous feedback, quickly adapt to changing requirements and uncertainty,

reduce waste, increase visibility and transparency, and strive for continuous

improvement. By always focusing on the most important items in the product backlog

and only working in short iterations that always produce working software, Scrum is

more customer focused and allows customers to see what they like (and don’t like) and

make changes as needed. The overhead cost in terms of process and management is

smaller, thus leading to quicker, cheaper results.

Scrum is a great methodology for projects with requirements that are not clearly known

and/or expected to change. This applies to most projects. Scrum is also great for

experienced, motivated teams as it allows teams to organize the work themselves and it

provides visibility, transparency, and accountability for both progress and problems. All

of this will result in teams improving and becoming more productive over time.

Scrum does have some disadvantages and is not the best methodology in some

situations:

• Transparency: Scrum increases transparency and accountability which is both

an advantage and disadvantage as problems and poor performance within and

outside the team and are exposed. This can be uncomfortable and can lead to

resistance if not handled properly within the Scrum framework of continuous

improvement.

• Team Experience and Commitment: Inexperienced and/or uncommitted

Scrum teams or Scrum Masters can cause serious problems through misapplying

the Scrum methodology. There are no defined roles in the Scrum team as

everyone does everything, so it requires committed team members with technical

experience to follow the Scrum process and improve over time. It can also be very

detrimental if other parts of the organization are resistant to Scrum.

• Scope Creep: There is a risk of scope creep, especially if there isn’t a defined

end date as stakeholders are allowed to add to the scope. Being able to change

scope and priorities is one of the main advantages of Scrum, but it can also be a

disadvantage if discipline isn’t used.

• Poorly defined work: Poorly defined and understood user stories or tasks can

lead to rework, inaccurate estimates, and scope creep. Although Scrum is focused

on working software over documentation, the product owner needs to be clear on

what they want and be able to clearly communicate that in conversations and in

the user stories.

• Scaling: Adopting the Scrum framework in large teams is challenging as Scrum

is meant for smaller teams.

Kanban

What Is Kanban?

Kanban is a lighter weight process that applies many of the Lean and Agile values as well

as a subset of the Scrum values and principles but there are also some fundamental

differences. Kanban focuses on visualization, flow, and limiting work in progress.

Kanban is Japanese for “signboard” or “billboard.” Toyota line-workers used a kanban

(i.e., an actual board) to signal extra capacity in various steps in their manufacturing

process. In software, this is done with a Kanban board, which is very similar to the

Scrum board. There is a prioritized backlog of To Do items and vertical columns for each

status that a work item can have. Like Scrum, work items are moved from one status to

another; however, in Kanban, the amount of work in progress is strictly limited to a

maximum number of items in each status based on team capacity. New work cannot be

pulled in until existing work is moved to the next step in the process. In Scrum, work in

progress in indirectly limited by controlling the amount of work planned for a sprint.

In Kanban, there are no fixed iterations or sprints, just a constant flow where work

items are pulled from one stage to the next. This means that the Kanban board is never

reset. It also means that many of the Scrum rituals not used. Kanban teams often have

daily standup meetings but they are not prescribed. There are no regularly planned

sprint planning meetings, sprint demos or sprint retrospectives, so the process is more

lightweight. Some of the activities in those rituals may or may not be performed at an

informal level. Continuous improvement is accomplished by tracking and analyzing the

flow of items from one state to another and making constant incremental improvements

based on what issues are uncovered.

Kanban also doesn’t prescribe the roles that Scrum does. The only role needed is the

team member role, however, there is often a project manager that manages the team

and the backlog. Often a single Kanban board can serve multiple function based roles

and/or teams that only work on items in a certain status. For example, a development

team might pull items from To Do to In Progress and move them to Testing, and the test

team might test items in Testing and move them to Done.

Many of the backlog management activities for prioritizing and grooming of work items

still need to be done to ensure that a given work item is well understood and ready to be

worked on, however, estimating the work items is prescribed as optional.

https://www.toptal.com/project-managers/pmi/indispensable-qualities-of-a-project-manager

Kanban vs. Scrum

The following table compares Scrum and Agile:

Kanban Scrum

Continuous Delivery Timeboxed Sprints

Less process and overhead Has prescribed Sprint rituals and roles

Focuses on completing individual items
quickly

Focuses on completing a batch of
work quickly

Measures Cycle Time Measures Sprint Velocity

Focuses on efficient flow Focuses on predictability

Limits WIP for individual items Limits WIP at a Sprint level

Individual work items are pulled
Work is pulled in batches at Sprint
Planning

No prescribed roles
Has prescribed roles (Scrum Master,
Product Owner, Team Member)

Kanban Board can be organized around a
single cross-functional team or multiple
specialized teams

Scrum Board is organized around a
single cross-functional team

Changes can be made at any time -> more

flexible

Changes are only allowed in the
Product Backlog. Changes within a

sprint are not allowed

Requires less training Requires more training

Kanban Scrum

Good for teams where only incremental
improvements are needed

Good for teams where fundamental
changes are needed

Summary: The End of Part 1

In this part, we reviewed a few of the most popular methodologies used for Software

Development. By now you should have a good understanding of Lean, Agile, Scrum, and

Kanban and their historical roots in Lean Manufacturing and TPS. In the next part of

the series, we will continue reviewing and comparing other Software Development

methodologies such as Waterfall, JTBD, and SAFe (and other scaling frameworks), as

well as hybrid methodologies, so you have all of them conveniently explained in one

place.

UNDERSTANDING THE BASICS

What is Agile?

Agile is an umbrella framework that applies to any process that applies the Agile set of

values and principles. Some of the examples are: Extreme Programming, Scrum, and

Kanban.

What is Scrum?

Scrum is a simple yet incredibly powerful set of principles and practices that help teams

deliver products in short cycles. Scrum is a framework that applies Agile principles that

was invented separately by multiple people, several of whom signed the Agile Manifesto.

https://en.wikipedia.org/wiki/Waterfall_model
https://www.intercom.com/blog/using-job-stories-design-features-ui-ux/
https://en.wikipedia.org/wiki/Scaled_agile_framework

What is Kanban?

TAGS
ProjectManagementAgileLeanScrumKanban

View full profile

Darren Hagman

Agile Project Manager

ABOUT THE AUTHOR

Darren is a veteran developer, scrum master, and project manager with deep experience in both

Waterfall and Agile methodologies from working in the transportation, archiving, eCommerce, and

aerospace industries. Darren spent ten years working in developer and lead/architect roles before

becoming a project manager. Darren understands the challenges of implementing Agile practices in

a team and how to effectively interface with the Waterfall world.

https://www.toptal.com/project-managers/blog/tags/projectmanagement
https://www.toptal.com/project-managers/blog/tags/agile
https://www.toptal.com/project-managers/blog/tags/lean
https://www.toptal.com/project-managers/blog/tags/scrum
https://www.toptal.com/project-managers/blog/tags/kanban
https://www.toptal.com/project-managers/resume/darren-hagman
https://www.toptal.com/project-managers/resume/darren-hagman
https://www.toptal.com/project-managers/resume/darren-hagman

