
The Project Management

Blueprint Part 2: A

Comprehensive

Comparison of Waterfall,

DAD, SAFe, LeSS,

and Scrum@Scale

DARREN HAGMAN

Darren is a veteran developer, scrum master, and project manager with deep experience in both

waterfall and agile methodologies.
11SHARES

Overview

In Part 1 of the Project Management Blueprint we covered Lean Software Development,

Agile, Scrum, and Kanban software development methodologies and how they all trace

their roots back to Lean Manufacturing. These methodologies are usually deployed on a

single team level. However, complexity grows as projects and project teams become

bigger and new approaches are needed to be agile at scale.

In Part 2, we will first dive into how project managers use the waterfall methodology,

which is the most common framework for software development at traditional

https://www.toptal.com/project-managers/resume/darren-hagman
https://www.toptal.com/project-managers/agile/project-management-blueprint-part-1-agile-scrum-kanban-lean
https://www.toptal.com/project-managers/waterfall
https://www.toptal.com/project-managers/resume/darren-hagman

companies. Juxtaposed to that, we will cover the most popular frameworks that try to

incorporate agile principles at scale–Disciplined Agile Delivery (DAD), Scaled Agile

Framework (SAFe), Large Scale Scrum (LeSS), and Scrum@Scale.

Waterfall

The waterfall methodology (also known as the software development life cycle model

(SDLC)) is a more traditional methodology where software development cascades from

one phase to the next like a waterfall. The phases do not overlap and have specific

entrance and exit criteria for moving from one phase to the next.

The six life cycle stages of the original waterfall model are:

1. Requirements: In this phase, the expectations and goals of the project are

defined, and requirements are analyzed and documented extensively, usually by

a business analyst. The requirements are reviewed and approved before exiting

this phase.

2. Design: After the requirements are approved, work commences on architecting

and designing the product to meet the approved requirements. The physical

architecture, component architecture, database design, detailed component,

module design, and other aspects of design are documented by a software

architect or designer. It is then reviewed and approved before beginning

implementation.

3. Implementation: After the design is approved, implementation or coding of

the software according to the requirements and design is done by software

developers.

4. Verification: After the implementation is complete, the software is tested by the

testing or QA team to ensure that the requirements and design are met and that

the desired level of quality is achieved. Defects are found, logged, triaged, and in

many cases, fixed.

5. Release and maintenance: After testing and debugging are completed, the

product is released to the client and installed. Often, a round of testing happens

to ensure that the installation was successful. After the product is delivered,

ongoing maintenance and support take place to ensure that the product

continues to work as designed.

Advantages of Waterfall

There are some advantages to waterfall and it is suitable for certain types of projects, but

there are also some serious disadvantages. Waterfall is best suited to shorter projects

where the requirements, technology are well understood and are not likely to change in

any significant way.

If applied to the right type of project, some of the advantages of the waterfall model:

• Simplicity: Waterfall is simple to implement due to identifying the scope up

front and due to the rigid phases and a clear transition from one phase to the

next.

• Visibility: Progress is more easily measured and seen by stakeholders as the full

scope of the work is known in advance and as the project transitions from one

stage to the next.

• Documentation: Scope, requirements, and plans can be thoroughly thought

through and well documented, which makes it easier for less experienced teams

to work on the project.

• Phased work: Due to the rigid roles and transition between phases, it is

possible for project resources to work on other projects when their primary phase

isn’t in progress.

Disadvantages of Waterfall

Waterfall is not suited for longer projects where the requirements are not well

understood and/or likely to change and/or where there is significant technical risk. In

today’s age where market conditions are constantly changing and time to market is

critical, this applies to most software projects.

Disadvantages of the waterfall model, which mostly center around its inability to adapt

to change, include:

• Monolithic scope: It rewards stakeholders to think of EVERYTHING when

defining the scope of the project, leading to a monolithic scope.

• Late client feedback: It is hard for stakeholders and especially clients to

imagine the full detailed scope of a project. Since waterfall exposes clients to

project results mostly in the last stages of the project, then inevitably it becomes

hard to incorporate client feedback into the project

• Requirements change: In longer projects market conditions, and therefore

project goals and requirements, are at very high risk of changing during the

project.

• Value created at the end: Waterfall requires a lot of the work up front,

meaning that value is not produced until late in the project.

• Phase interdependency: Incorporating changes often results in requirements

and/or design rework which may impact other areas of the project. The

dependency of later stages upon earlier stages can make small changes in the

project disproportionately challenging.

Disciplined Agile Delivery (DAD)

Disciplined agile delivery (DAD) was formalized by Scott Ambler at IBM and Mark Lines

and expands upon the agile and scrum frameworks, recognizing that non-agile parts of

an organization are usually involved in some capacity in delivering a software project.

This framework explicitly includes activities from IT operations, enterprise architecture,

portfolio management, finance, and procurement into the full delivery lifecycle. DAD

aims to increase overall business agility in a pragmatic way.

Main Principles and Components

http://www.disciplinedagiledelivery.com/
http://www.ambysoft.com/books/dad.html

ROLES

DAD has considerably more roles than scrum and is broken down into two categories of

team roles. Primary roles are filled by people who work with the project on a constant

basis. Secondary roles are typically introduced temporarily to help the team with scaling

or other issues. DAD has these additional roles because it addresses the entire solution

delivery lifecycle and because it recognizes the various types of needed temporary and

supporting roles found in the real world

Primary roles:

1. Stakeholder: Someone who depends on your team finishing the project: client,

end-user, or internal colleague.

2. Team member: People within the team that actually do the planned work:

developers, designers, testers, etc.

3. Team lead: Analogous to the scrum master, the team lead works as a servant-

leader for the team by removing impediments, facilitating team cohesion and

spreading agile values.

4. Product owner: Sometimes referred to as the “voice of the customer.” The

product owner represents the stakeholders and maintains the prioritized list of

work that needs to be done.

5. Architecture owner: Responsible for mitigating architecture risk at scale. This

role is typically filled by a senior developer within the team as it requires a deep

technical background and solid business domain knowledge.

Secondary roles:

1. Specialist: People who join the team temporarily to help out in a specialized

role. For example, a data analyst may join to provide research capabilities in the

early stages of a project.

2. Domain expert: Tax consultants, legal advisers, and other people who have

domain expertise and help out the team on related challenges.

3. Technical expert: Database administrator, security expert build master, etc.

These people help out the more generalized team members at key points in the

life cycle.

4. Independent tester: While testers are usually part of the main team, in some

cases life regulatory requirements or very complex systems, independent testers

work in parallel to validate deliver work.

5. Integrator: At scale, different teams are working on different parts of the whole

system. An integrator helps the team integrate their part with the whole system

and manages dependencies.

LIFECYCLE SUPPORT

DAD promotes a full delivery lifecycle, not just the programming and release part

covered by agile/scrum, but also the inception phase where the project vision is defined

and approved and the support and retirement phases after release. Currently, DAD

supports 6 different lifecycles:

• The Agile Lifecycle: A Scrum-based Project Lifecycle

• The Lean Lifecycle: A Kanban-based Project Lifecycle

• The Continuous Delivery: Agile Lifecycle

• The Continuous Delivery: Lean Lifecycle

• The Exploratory (Lean Startup) Lifecycle

• The Program Lifecycle for a Team of Teams

These lifecycles account for different work styles, levels of company agility, and other

situations that the teams might find themselves in. The main point is that these

lifecycles act as suggestions. DAD promotes pragmatism over purism since every

situation is unique and disciplined agile practitioners should adopt the agile process to

their needs.

PROCESS GOALS

DAD uses a goal-driven approach to creating and adapting agile processes. The authors

of this methodology outline 21 most important and common processes that most teams

will face during their life cycles.

https://www.disciplinedagiledelivery.com/lifecycle/

All of these processes have documented decision points that will require the team to

decide how they will structure that process. Each decision point provides suggested

techniques or practices that can be used to implement the decision. You can see an

example of this in the image below. A process “Develop Common Vision” has 6 decisions

that should be made. Each of those decisions has 2 to 5 suggested practices. The arrows

indicate that DAD authors have ordered the list with the top item being the best practice

and the bottom item being the worst practice in this list. The_ bolded italic_ text

signifies good starting points for new teams, who are just starting out with DAD.

SCALING OF DAD

Disciplined Agile Delivery approaches scaling from two different angles:

• Tactical agility at scale

• Strategic agility at scale

Tactical agility tries to address individual team scaling factors such as size, geographic

distribution, project complexity, etc, through situational application of the process goals

and their suggested practices.

Strategic agility tries to address scaling thru the application of agile and lean strategies

broadly across the entire organization by expanding the framework to address different

areas of the organization:

• Disciplined DevOps: covers using DevOps to provide more effective outcomes to

an organization.

• Disciplined Agile IT (DAIT): covers how to apply agile and lean strategies to all

aspects of IT.

• Disciplined Agile Enterprise:. covers how to apply lean and agile throughout an

enterprise.

SAFe

Scaled Agile Framework (SAFe) is the most popular as well as the most complex and

comprehensive scaled Agile framework right now. 29% of respondents in the Annual

State of Agile Report claim that they use this framework in their organizations. In turn,

there are many SAFe project managers in the market.

The inception of SAFe was Dean Leffingwell’s book “Scaling Software Agility: Best

Practices for Large Enterprises,” published in 2007. Leffingwell is now the chief

methodologist of SAFe, but many other people also contribute to this framework.

Currently, in version 4.6, this framework resembles a software product with versioning,

backward compatibility, and various components.

Main Principles and Components

The primary goal of SAFe is to facilitate the creation and growth of a Lean Enterprise as

it recognizes that many different types of companies are, in part, software companies

that need to continually deliver value in the shortest, sustainable time period.

https://www.disciplinedagiledelivery.com/disciplineddevops/
https://www.disciplinedagiledelivery.com/dait/
https://www.disciplinedagiledelivery.com/dae/
https://scaledagile.com/
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://www.toptal.com/project-managers/scaled-agile-framework
https://scalingsoftwareagility.wordpress.com/about-the-book/
https://scalingsoftwareagility.wordpress.com/about-the-book/

SAFe for Lean Enterprises tries to create a Lean Enterprise by providing a knowledge

base of proven principles, competencies, and best practices.

SAFe 4.6 defines Five Core Competencies of the Lean Enterprise. Each competency is a

set of related knowledge, skills, and behaviors, which together enable organizations to

excel:

1. Lean-Agile leadership: Describes how leaders drive and sustain

organizational change through learning, teaching, and implementing SAFe’s

Lean-Agile mindset.

2. Team and technical agility: Describes the skills, principles, and practices that

are needed to create high-performing Agile teams.

3. DevOps and release on demand: Describes how implementing DevOps and a

continuous delivery pipeline provides organizations with the capability to release

product increments at any time necessary to meet demand.

4. Business solutions and lean systems engineering: Describes how to apply

lean-agile principles and practices to the specification, development,

deployment, and evolution of large, complex software applications

5. Lean portfolio management: Aligns strategy and execution by applying lean

and systems thinking approaches to strategy and investment funding, agile

portfolio operations, and governance.

Each of the core competencies map directly to their respective level in the SAFe process

diagram except Lean-Agile Leadership which encompasses the entire process.

LEAN-AGILE LEADERSHIP COMPETENCY

The primary goal of the Lean-Agile Leadership Competency is to help transform the

organization to a lean-agile enterprise. This is done by learning, practicing, and teaching

SAFe’s Lean-Agile mindset, values, principles, and practices.

SAFe’s Core Values guide the transformation to the lean enterprise. At every

opportunity, a leader’s behavior plays a critical role in promoting them. The core values

are:

1. Alignment: Communicate the mission, portfolio strategy, and solution vision.

Conduct relevant briefings, and participate in program increment (PI) planning

and backlog maintenance.

2. Transparency: Visualize all relevant work.

3. Built-in quality: Engage in practices to deliver quality throughout the life cycle.

Refuse to accept low-quality work. Support investments in maintenance and

reducing technical debt.

4. Program execution: Participate as business owners in PI execution and

establish business value. Ensure that the scope is aligned with demand and

capacity. Aggressively remove impediments and demotivators.

SAFe core values are supported by embracing the Lean-Agile Mindset and

applying SAFe Principles:

1. Take an economic view

2. Apply systems thinking

3. Assume variability; preserve options

4. Build incrementally with fast, integrated learning cycles

5. Base milestones on an objective evaluation of working systems

https://www.scaledagileframework.com/lean-agile-leadership/
https://www.scaledagileframework.com/safe-core-values/
https://www.scaledagileframework.com/lean-agile-mindset/
https://www.scaledagileframework.com/safe-lean-agile-principles/

6. Visualize and limit WIP, reduce batch sizes, and manage queue lengths

7. Apply cadence, synchronize with cross-domain planning

8. Unlock the intrinsic motivation of knowledge workers

9. Decentralize decision-making

These principles are similar to Lean and Agile principles. Finally, transforming the

organization is accomplished by following the SAFe Implementation Roadmap.

TEAM AND TECHNICAL AGILITY COMPETENCY/TEAM LEVEL

The Team and Technical Agility Competency describes the skills, principles, and

practices needed to create high-performing agile teams who create high-quality

solutions. Two key characteristics are critical:

• Team agility: teams adopt Agile practices and principles, which enable them to

work, learn, and adapt on a reliable cadence

• Technical agility: teams apply Agile technical practices that ensure the code

and component quality, and maintainability of the code they produce\ Quality is

a big focus in the team and technical agility competency. To achieve this, agile

engineering techniques such as Behavior Driven Development (BDD) and Test-

driven development (TDD) are applied to increase quality and flow. Fast flow

depends on building quality throughout the system as errors can severely impact

flow and delay releases.

The Team Level of the SAFe diagram describes how individual Agile teams operate. All

teams are part of the Agile Release Train which work towards delivering a Product

Increment. Most of the traditional agile/scrum flow applies, where teams work in

https://www.scaledagileframework.com/implementation-roadmap/
https://www.scaledagileframework.com/team-and-technical-agility/
https://www.scaledagileframework.com/team-level/

iterations to deliver working systems. The roles of scrum master, product owner, and

team member are used in SAFe as are most of the scrum activities and artifacts. Teams

are also supported by program level roles such as Product Management, System

Architect, and other shared services. Kanban is used to help visualize the flow of

features through the delivery lifecycle and interactions and handoffs between teams.

DEVOPS AND RELEASE ON DEMAND COMPETENCY/PROGRAM LEVEL

The DevOps and Release on Demand Competency describe how “implementing DevOps

and a continuous delivery pipeline provides the enterprise with the capability to release

value, in whole or in part, at any time necessary to meet market and customer demand.”

DevOps works to align development, operations, the business, and other areas to work

together to deliver business results. While not every organization needs to release as

often as some of the industry leaders of the DevOps movement (Amazon releases every

few seconds), all organizations need to be able to release on demand.

• DevOps provides the culture, automation, lean-flow, measurement, and recovery

(CALMR) approach that enables continuous delivery and release on demand

• Agile release trains (ARTs) are teams of agile teams that are organized to deliver

value on demand via a continuous delivery pipeline

The Program Level of the diagram describes the roles and activities needed to

continuously deliver via an Agile Release Train (ART). This level works in a similar

iterative way to the team level but integrates multiple agile teams and includes more

cycles. The ART is an agile team of teams comprised of 5 to 12 teams (50 to 125 people)

including the traditional agile roles as well as critical program roles like Release Train

Engineer (RTE) and Product Management. The ART delivers in 8-12 week Program

https://www.scaledagileframework.com/devops-and-release-on-demand/
https://www.scaledagileframework.com/program-level/

Increments (PI) which are planned via PI Planning and led by a Product

Manager.

The progress of PI features, epics, etc is tracked and managed via a Program Kanban

board. The RTE acts as the Scrum Master on the ART. Daily synchronization meetings

include team Daily Standups, Scrum-of-Scrums (RTE & Scrum Masters), PO Sync

(Product Management & Product Owners), and ART Sync (Scrum-of-Scrums and PO

Sync together). Each PI has a System Demo and a Retrospective.

BUSINESS SOLUTIONS AND LEAN SYSTEMS ENGINEERING

COMPETENCY/LARGE SOLUTION LEVEL

The Business Solutions and Lean Systems Engineering Competency describes “how to

apply Lean-Agile principles and practices to the specification, development,

deployment, and evolution of large, complex software applications and cyber-physical

systems”.

In addition to the SAFe principles, applying the following 8 principles when working on

large solutions are key to this competency:

The Large Solution Level contains the roles, artifacts, and processes needed to build

large and complex solutions. Multiple ARTs are working together on Solution

Trains to deliver Solutions. The primary objectives are to:

• Manage frequent integration

https://www.scaledagileframework.com/business-solutions-and-lean-systems/
https://www.scaledagileframework.com/large-solution-level/

• Continuously address compliance concerns

• Architect for scale, modularity, releasability, and serviceability

Solution Management controls the content of a Solution and the Solution Train

Engineer (STE) guides the work. Solution Architect is responsible for maintaining

good architecture for all the ARTs in the Solution. Pre and Post PI Planning is used

to plan Solutions delivered via multiple Program Increments. A Solution

Backlog contains Capabilities and Solution Epics and is tracked via a Solution

Kanban board

PORTFOLIO LEVEL/LEAN PORTFOLIO MANAGEMENT COMPETENCY

The Lean Portfolio Management Competency “aligns strategy and execution by applying

Lean and systems thinking approaches to strategy and investment funding, agile

portfolio operations, and governance.”

Lean Portfolio Management focuses on the following areas:

https://www.scaledagileframework.com/lean-portfolio-management/

1. Strategy and investment funding: connects the portfolio to enterprise strategy,

funds value streams, and establishes portfolio flow

2. Agile portfolio operations: coordinates the value streams, support program

execution, and operational excellence

3. Lean governance: forecasts budgets, measures portfolio performance and

enforces compliance

The Portfolio Level contains the principles, practices, and roles needed to initiate and

govern a set of development Value Streams. A Portfolio Backlog contains Business

Epics and Enabler Epics and is tracked via a Portfolio Kanban* board. **Lean

Portfolio Management (LPM) decides on what value streams are in a portfolio and

includes the highest decision-makers in an enterprise. An Enterprise

Architect guides the work and coordinates across Value Streams.

https://www.scaledagileframework.com/portfolio-level/

LeSS

Large scale scrum (LeSS) framework was created by Craig Larman and Bas Vodde, who

have based it on their experience in the financial and telecommunication industries. As

the name implies, LeSS promotes having as few processes and procedures as possible to

have many Scrum teams work together. Scaling is hard because people make it complex,

so the goal here is to make it as simple as possible.

Main Principles and Components

“LeSS is Scrum, applied to many teams, working together, on one product”. LeSS is

based on ten principles which will seem familiar to anyone who is familiar with Lean-

Agile principles:

1. Large-Scale Scrum is Scrum

2. Empirical process control

https://less.works/

3. Transparency

4. More with less

5. Whole-product focus

6. Customer-centric

7. Continuous improvement towards perfection

8. Systems thinking

9. Lean thinking

10. Queuing theory

LeSS has only two main roles, both of which are borrowed from Scrum:

1. Product owner: Works with 2-8 teams.

2. Scrum master: Works with 1-3 teams.

All the teams work with the same product backlog in 1-4 week sprints. The teams

work in parallel, meaning that they start and end sprints at the same time. At the end of

the sprint, the teams collectively deliver a product increment. It might seem nearly

impossible for one product owner to work with 8 teams. LeSS promotes moving the

responsibility of product backlog item clarification to the teams. In turn, the teams must

be cross-functional and contain not only coding, design, and testing competencies but

also business domain knowledge. More importantly, the teams have to be empowered to

be able to reach out to customers.

SPRINT PLANNING

Planning is split into two parts:

1. Sprint planning 1: Where representatives of teams meet with the product

owner and decide on which backlog items they will take on and discuss any

potential cooperation that might be needed between the teams during the sprint.

2. Sprint planning 2: Same as in traditional scrum, each team gathers separately

to create a plan for how the backlog items will be done.

PRODUCT BACKLOG REFINEMENT

Product backlog refinement (PBR) is done during the sprint to prepare product backlog

items for sprint planning. LeSS does not offer rules how to do PBR and leaves it up to

the companies to figure out their most effective process themselves. PBR involves three

key activities:

1. Splitting big items.

2. Detailing items until ready.

3. Estimating.

END OF SPRINT

At the end of each sprint three things happen:

1. Sprint Review: A shared Sprint demo, where teams and customers explore

what was done during the Sprint and what should be done next.

2. Retrospective: Each team holds their own retrospective to improve their

process.

3. Overall retrospective: Teams, product owners, and scrum masters get

together to inspect and adapt organizational practices to be more effective.

Scrum@Scale

Scrum at Scale and Scrum@Scale are used interchangeably. This methodology was

introduced by Jeff Sutherland in 2014, who created the Scrum methodology and was

one of the signatories of the Agile Manifesto.

Scrum@Scale takes Scrum as its starting point and offers a simple, lightweight

framework to scale Scrum with a “minimum viable bureaucracy”. It is less prescriptive

than the others scaled agile methodologies and can be considered as a meta-framework.

It highlights the scaling issues and areas and offers a mental framework for how they

could be addressed.

Main Principles and Components

Scrum@Scale is a framework that radically simplifies scaling by using Scrum to scale

Scrum. In Scrum, the “what” (product owner) is clearly separated from the “how”

(scrum master). The same strategy is used in Scrum@Scale so that jurisdiction and

accountability are well understood, eliminating waste and conflict.

Scrum@Scale contains two cycles to clearly separate jurisdictions: the Scrum Master

cycle and the Product Owner cycle with two touchpoints: Team Level Process and

Product Release Feedback.

https://www.scrumatscale.com/scrum-at-scale-guide/
https://en.wikipedia.org/wiki/Jeff_Sutherland

SCRUM MASTER CYCLE

The scrum master cycle is responsible for how the things that the product owner

cycle identified will be built. In Scrum@Scale, individual Scrum teams have the same

roles, artifacts, activities, and ceremonies as traditional Scrum.

Scrum teams are grouped into a Scrum of Scrums (SoS) which jointly responsible

for producing a joint product increment. They participate in joint backlog grooming and

prioritization, hold retrospectives, maintain impediment backlogs, and they hold

a Scaled Daily Scrum (SDS) (similar in format to the daily scrum) to coordinate the

teams and remove roadblocks. The SDS is attended by at least one representative

(usually the team’s scrum master) of each of the participating teams and is led by

the Scrum of Scrums master (SoSM) who is responsible for coordinating with the

scrum teams and the product owners.

If further scaling is needed, there is a scrum of scrum of scrums (SoSoS) created

out of multiple SoS which would also meet daily, and so on. The overall leader is

the Executive Action Team (EAT) which is responsible for promoting Agile in the

organization, coordinating Scrum teams as needed, and for being the final stop for

removing impediments.

PRODUCT OWNER CYCLE

The Product Owner Cycle is responsible for what product or service will be created

and all the activities needed to support that. Product Owners are assigned to Scrum

teams and carry out all the activities of their role as defined in Scrum. Product owners

are grouped into Product Owner Teams which map to the SoS teams. Product

Owner Teams meet daily at a Meta Scrum to discuss a high-level strategy for the

teams, and coordinate as needed with the corresponding SoSM and other product

owners and stakeholders.. Meta Scrums are led by a Chief Product Owner (CPO).

Product Owners scale in a similar way to the scrum master cycle, depending on the size

of the organization and culminates in an Executive Meta Scrum (EMT), which is

responsible for company-wide priority setting.

IMPLEMENTING SCRUM@SCALE

Implementation of Scrum@Scale starts with creating a scalable reference model, i.e. a

small set of teams using scrum at a small scale. This is done to resolve any

organizational policies and development practices that hinder

agile. Scrum@Scale suggests resolving these early because all teams are likely to face

these organization wide-problems and the consequent frustrations could hinder the

adoption of agile. The reference model is then used as a pattern for scaling scrum to

other teams and departments.

Executive action team (EAT) has to be created initially to implement the reference

model. EAT is comprised of individuals who are politically and financially empowered

within the organization, as they will be able to implement the organizational policy

changes.

Conclusion

In this second part of the project management blueprint, we’ve covered some of the

most popular frameworks used on larger projects or programs. Waterfall is still widely

used in many organizations, and while it has many disadvantages due to its inflexible

processes, it sometimes makes sense to use this framework when the projects are small

and the scope is well-defined and unlikely to change.

As companies encounter larger, more complex projects with constantly changing

requirements or goals, they look to more Agile approaches. As Agile was originally

meant for small teams of 5-9 people, various Agile practitioners have come with

multiple ways to scale agile from single teams, to multiple teams, to the entire

enterprise. In this article, we covered Disciplined Agile Delivery (DAD), Scaled Agile

Framework (SAFe), Large Scale Scrum (LeSS), and Scrum@Scale.

In the final part of the project management blueprint, we will cover a few project

management specific frameworks like PMP (PMBOK) and PRINCE2. We will also go

over some innovation processes and frameworks like “jobs to be done” (JTBD) and

“design thinking.”

UNDERSTANDING THE BASICS

What is the difference between waterfall and agile methodologies?

Waterfall methodology involves a lot of up-front planning and the results are delivered

at the end of a project. Agile methodology promotes lightweight planning and multiple

iterations to deliver results in small increments.

Can waterfall and agile be used together?

Yes. Dividing a waterfall project into parts, where some of the work would be done

iteratively in sprints would be an example of the two methodologies used together.

Hybrid methodologies also help to combine both approaches to get the most benefits.

What is a hybrid methodology?

TAGS
AgileWaterfallScrum@ScaleLeSSSAFeDAD

View full profile

Darren Hagman

Project Manager

https://www.toptal.com/project-managers/blog/tags/agile
https://www.toptal.com/project-managers/blog/tags/waterfall
https://www.toptal.com/project-managers/blog/tags/scrumscale
https://www.toptal.com/project-managers/blog/tags/less
https://www.toptal.com/project-managers/blog/tags/safe
https://www.toptal.com/project-managers/blog/tags/dad
https://www.toptal.com/project-managers/resume/darren-hagman
https://www.toptal.com/project-managers/resume/darren-hagman
https://www.toptal.com/project-managers/resume/darren-hagman

ABOUT THE AUTHOR

Darren is a veteran developer, scrum master, and project manager with deep experience in both

Waterfall and Agile methodologies from working in the transportation, archiving, eCommerce, and

aerospace industries. Darren spent ten years working in developer and lead/architect roles before

becoming a project manager. Darren understands the challenges of implementing Agile practices in

a team and how to effectively interface with the Waterfall world.

